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Abstract
By reconsidering soliton solutions of the Toda lattice and differential-difference
KdV equation in the Casorati determinant form with new entries, we obtain
rational and mixed rational–soliton solutions in the Casorati determinant form.
All these solutions are verified by direct substitutions into bilinear equations.
The method used is general and can apply to other discrete systems.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

1. Introduction

Since GGKM’s discovery [1] of the inverse scattering transform and Hirota’s discovery [2]
of the bilinear method, many studies have been devoted to finding soliton solutions for the
evolution equations. Hirota [3] also proposed a kind of Bäcklund transformation (BT) in a
bilinear form, by which solutions can be derived recursively and easily. A soliton solution can
also be represented in terms of a Wronskian [4, 5]. By using bilinear equations (or bilinear
BT) and compact forms of derivatives of a Wronskian, Freeman and Nimmo [6–9] developed
a procedure, which we call the Wronskian technique, to verify solution by direct substitutions.

Rational solution of the KdV equation was first investigated by Moser and co-workers
[10, 11]. In 1978, Ablowitz and Satsuma [12] developed a simple method to find rational
solutions by taking the long wave limit in the multisoliton solution in Hirota’s form. This
method is general and has been used for some differential-differencesystems [13, 14]. Another
different approach was proposed by Hu and Clarkson [15] in 1995. By using Hirota’s bilinear
formalism and BTs, they gave the nonlinear superposition formulae of rational solutions for
three differential-difference equations. It should be noted that following thoughts of Ablowitz
and Satsuma [12], Nimmo and Freeman [16] verified rational solutions of the KdV equation
in the Wronskian form. However, they stated at that time that [16]: ‘It might be hoped that the
rational solutions of other equations of the type whose solutions take Wronskian form may be
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obtained in a similar way, however we have found this not to be possible.’ In 1992, Matveev
[17] presented a new derivation of rational solution for the KdV equation by generalizing
the Wronskian formula. The Wronskian which he considered can be written as a product
of an exponential function and a determinant with entries of polynomials of x and t. As the
exponential function disappears when we recover a solution, the determinant can denote a
rational solution.

Mixed rational–soliton solutions (quasi-soliton) of the KdV equation were discovered by
Ablowitz and Cornille [18]. In 1996, Cârstea and Grecu [13] obtained 1-rational multisoliton
solutions for the Toda lattice using bilinear BT. They also gave the Wronskian of 1-rational
N-soliton solutions. Recently, this kind of mixed solution for some other differential-difference
equations was investigated by Narita [19–21]. He developed some new representations and
new procedures for mixed solutions. The generalized Wronskian presented by Matveev [17]
can also denote a sort of mixed solution which he calls a positon–soliton solution [17, 22].

It is well known that the solution in Wronskian form not only allows direct verifications,
but is also easy to calculate. In this paper, for two differential-difference equations,we consider
their rational and mixed solutions in the form of the discrete analogue of a Wronskian, the
Casorati determinant (CD), namely, a ‘Wronskian’ constructed in terms of the shift of discrete
variable n. The key is to choose new suitable entries in the CD, though it does not lead to new
soliton solutions. However, such a new choice allows us to derive rational solutions in the CD
form following the method proposed by Nimmo and Freeman [16]. And further, we develop
Nimmo–Freeman’s procedure to obtain arbitrarily mixed multirational multisoliton solutions
in the CD form. All these solutions are verified by direct substitutions into bilinear equations.
Two examples considered in this paper are the Toda lattice and differential-difference KdV
equation. The method used here is general and can apply to other discrete systems.

The paper is organized as follows. In section 2, soliton, rational and mixed solutions in
the CD form for the Toda lattice are obtained. In section 3, we obtain similar results for the
differential-difference KdV equation. Finally, a conclusion is given.

2. Rational and mixed solutions in the CD form of the Toda lattice

In this section, we derive rational and mixed multirational–multisoliton solutions in the CD
form for the Toda lattice, which is the most known and studied nonlinear integrable lattice
model.

2.1. Soliton solution of the Toda lattice

We first recall some results about the Toda lattice. The Toda lattice is [23]

xn,tt = exn−1−xn − exn−xn+1 (2.1)

with bilinear form [24][
D2

t − 2(cosh Dn − 1)
]
fn · fn = 0 (2.2)

or

fnfn,tt − f 2
n,t − fn−1fn+1 + f 2

n = 0. (2.3)

Here D is the well-known Hirota bilinear operator

Dm
t f · g = (∂t − ∂t ′)

mf (n, t)g(n, t ′)|t ′=t eDnan · bn = an+1bn−1

and the transformation is

yn = xn − xn−1 e−yn − 1 = (ln fn)tt . (2.4)
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In [9], Nimmo constructed a Wronskian

fn =

∣∣∣∣∣∣∣∣∣∣∣

ψ1(n, t) ψ
(1)

1 (n, t) · · · ψ
(N−1)

1 (n, t)

ψ2(n, t) ψ
(1)

2 (n, t) · · · ψ
(N−1)

2 (n, t)

...
... · · · ...

ψN(n, t) ψ
(1)

N (n, t) · · · ψ
(N−1)

N (n, t)

∣∣∣∣∣∣∣∣∣∣∣
= |0, 1, . . . , N − 1| = |N̂ − 1| (2.5)

where

ψj (n, t) = a+
j ekj n+t ekj

+ a−
j e−kj n+t e−kj

a+
j , a−

j , kj ∈ R (j = 1, 2, . . . , N) (2.6)

and ψ
(l)

j (n, t) = dlψj (n, t)/dt l . Here we follow Nimmo’s notation [9]; let N̂ − j indicate the

set of consecutive columns 0, 1, 2, . . . , N − j and let Ñ − j indicate the set of consecutive
columns 1, 2, . . .N − j . Noting that ψj (n, t) satisfies

2 cosh kjψj (n, t) = ψj (n − 1, t) + ψj (n + 1, t) kj ∈ R (2.7a)

ψj,t (n, t) = ψj (n + 1, t) (2.7b)

and with the help of formulae2
N∑

j=1

cosh kj

 |N̂ − 1| = |N̂ − 2, N | + |−1, Ñ − 1| (2.8)

2
N∑

j=1

cosh kj

 |N̂ − 2, N |

= |N̂ − 3, N − 1, N | + |N̂ − 2, N + 1| + |N̂ − 1| + |−1, Ñ − 2, N | (2.9)

Nimmo [9] proved that equation (2.5) with entries (2.6) solved the bilinear equation (2.3).
In fact, similar to Nimmo’s proof [9], it is easy to show that for any {ψj(n, t)} which enjoy

equations (2.7a) and (2.7b), Wronskian (2.5) solves (2.3), i.e. equation (2.6) is a particular
choice. On the other hand, under the condition of (2.7b), equation (2.5) is just a CD.

In this paper, we define

φj(n, t) = a+
j ekj n+t (ekj −1) + a−

j e−kj n+t (e−kj −1) = e−tψj (n, t) (2.10)

and construct a CD in terms of φj (n, t), i.e.

Fn =

∣∣∣∣∣∣∣∣
φ1(n, t) φ1(n + 1, t) · · · φ1(n + N − 1, t)

...
... · · · ...

φN(n, t) φN(n + 1, t) · · · φN(n + N − 1, t)

∣∣∣∣∣∣∣∣ = |0, 1, . . . , N − 1| = |N̂ − 1|.

(2.11)

Here we still adopt the notation ‘̂ ’ and ‘̃ ’. Such a CD still satisfies the identities (2.8) and
(2.9) but has special derivatives with respect to t, for example, Fn,t = −NFn + |N̂ − 2, N |.
In a similar way to [9], it is not difficult to verify that Fn solves equation (2.3) by direct
substitution. An alternative verification comes from the facts Fn = e−Ntfn and

FnFn,tt − F 2
n,t − Fn−1Fn+1 + F 2

n = e−2Nt
(
fnfn,tt − f 2

n,t − fn−1fn+1 + f 2
n

)
.

Obviously, Fn and fn recover the same solution from the transformation (2.4). However, such
a CD allows us to derive rational solutions following the method proposed by Nimmo and
Freeman [16].
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2.2. Rational solution

We first expand ekj n+t (ekj −1) as

ekj n+t (ekj −1) =
∞∑
i=0

∞∑
s=0

1

i!
niβs(t)k

i+s
j =

∞∑
m=0

[ ∞∑
s=0

nm−s

(m − s)!
βs(t)

]
km

j (2.12)

where βs(t), a function of t, is determined by

∞∑
s=0

βs(t)k
s
j =

∞∑
l=0

t l

l!

( ∞∑
h=1

1

h!
kh

j

)l

(2.13)

or, equivalently, by the following explicit formulae:

β0(t) = 1 β1(t) = t β2(t) = 1
2 (t + t2) β3(t) = 1

6 t + 1
2 t2 + 1

6 t3

βs(t) = t
1

s!
+

1

2!
t2

∑
h1+h2=s

1

h1!

1

h2!
+

1

3!
t3

∑
h1+h2+h3=s

1

h1!

1

h2!

1

h3!
+ · · ·

+
1

(s − 2)!
t s−2

∑
h1+h2+···+hs−2=s

s−2∏
j=1

1

hj !


+

1

2

1

(s − 2)!
t s−1 +

1

s!
t s (hj � 1). (2.14)

We also have

e−kj n+t (e−kj −1) =
∞∑

m=0

[ ∞∑
s=0

nm−s

(m − s)!
βs(t)

]
(−kj )

m. (2.15)

Now we consider the rational solution when a+
j = a−

j = 1 (or, generally, a+
j /a−

j = 1) in
(2.10). In this case, we have φj(n, t) = ∑∞

i=0 ai(n, t)k2i
j and

ai(n, t) =
2i∑

s=0

n2i−s

(2i − s)!
βs(t). (2.16)

Taking (k1, k2, . . . , kN) −→ (0, 0, . . . , 0) yields

Fn ∼ |N̂ − 1|RK (2.17)

where

|N̂ − 1|R =

∣∣∣∣∣∣∣
a0(n, t) a0(n + 1, t) · · · a0(n + N − 1, t)

...
... · · · ...

aN−1(n, t) aN−1(n + 1, t) · · · aN−1(n + N − 1, t)

∣∣∣∣∣∣∣ (2.18)

and K is a Vandermonde determinant

K =

∣∣∣∣∣∣∣∣∣
1 k2

1 · · · k
2(N−1)
1

...
... · · · ...

1 k2
N · · · k

2(N−1)
N

∣∣∣∣∣∣∣∣∣ =
∏

1�i<j�N

(
k2

j − k2
i

)
.
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Noting some identities about |N̂ − 1|R derived from (2.8) and (2.9):

2N |N̂ − 1|R = |N̂ − 2, N |R + |−1, Ñ − 1|R

2N |N̂ − 2, N |R = |N̂ − 3, N − 1, N |R + |N̂ − 2, N + 1|R + |N̂ − 1|R + |−1, Ñ − 2, N |R
we can verify |N̂ − 1|R to be the solution of the bilinear equation (2.3). That is to say,
the rational solution of the Toda lattice can be generated from |N̂ − 1|R in which ai(n, t) is
determined from equation (2.16).

In the cases of a+
j = −a−

j = 1 and |a+
j | �= |a−

j |, the rational solutions can also be denoted
by (2.18), but ai(n, t) is defined respectively by

ai(n, t) =
2i+1∑
s=0

n2i+1−s

(2i + 1 − s)!
βs(t) (2.19)

and

ai(n, t) =
i∑

s=0

ni−s

(i − s)!
βs(t). (2.20)

2.3. Mixed (N − l)-rational l-soliton solution

We still consider the case of a+
j = a−

j = 1. Without losing generality, we expand Fn with
respect to the first l rows,

Fn =
∑

0�i1<i2<···<il�N−1

(−1)
∑l

j=1(j+ij +1) · A(i1, i2, . . . il) · B(i1, i2, . . . il)

(1 � l � N − 1) (2.21)

where

A(i1, i2, . . . il) =

∣∣∣∣∣∣∣∣
φ1(n + i1, t) · · · φ1(n + il, t)

... · · · ...

φl(n + i1, t) · · · φl(n + il, t)

∣∣∣∣∣∣∣∣
and B(i1, i2, . . . il) is the cofactor of A(i1, i2, . . . il).

If we only take the limit of (kl+1, kl+2, . . . , kN ) −→ (0, 0, . . . , 0) in equation (2.21), we
have

Fn ∼ |N̂ − 1|MK (2.22)

where

|N̂ − 1|M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(n, t) φ1(n + 1, t) · · · φ1(n + N − 1, t)

...
... · · · ...

φl(n, t) φl(n + 1, t) · · · φl(n + N − 1, t)

a0(n, t) a0(n + 1, t) · · · a0(n + N − 1, t)

...
... · · · ...

aN−l−1(n, t) aN−l−1(n + 1, t) · · · aN−l−1(n + N − 1, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.23)
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K =

∣∣∣∣∣∣∣∣∣
1 k2

l+1 · · · k
2(N−l−1)
l+1

...
... · · · ...

1 k2
N · · · k

2(N−l−1)
N

∣∣∣∣∣∣∣∣∣ =
∏

l+1�i<j�N

(
k2

j − k2
i

)
.

We can finish the verification of the solution with the help of the formulae2(N − l) + 2
l∑

j=1

cosh kj

 |N̂ − 1|M = |N̂ − 2, N |M + |−1, Ñ − 1|M

2(N − l) + 2
l∑

j=1

cosh kj

 |N̂ − 2, N |M

= |N̂ − 3, N − 1, N |M + |N̂ − 2, N + 1|M + |N̂ − 1|M + |−1, Ñ − 2, N |M.

Thus, |N̂ − 1|M indicates a mixed (N − l)-rational l-soliton solution in the CD form for the
Toda lattice. For the case of a+

j = a−
j = 1, ai(n, t) is defined by (2.16), for the cases of

a+
j = −a−

j = 1 and |a+
j | �= |a−

j |, ai(n, t) is defined respectively by (2.19) and (2.20). These
mixed solutions are more general than the results in [13] and differ from [25] which considered
positon–soliton solutions through the Darboux transformation.

3. Solutions of the differential-difference KdV equation

The differential-difference KdV equation under consideration is [16, 26]

−
(

Wn

1 + Wn

)
t

= Wn− 1
2
− Wn+ 1

2
. (3.1)

It can be written in the bilinear form [27]

sinh
(

1
4Dn

) [
Dt − 2 sinh

(
1
2Dn

)]
fn · fn = 0 (3.2)

with the transformation

Wn =
(
cosh 1

2Dn

)
fn · fn

f 2
n

− 1. (3.3)

We can obtain soliton, rational and mixed solutions of this equation by employing similar
procedures to section 2 above. Here, we only list the main results.

Soliton solution can be denoted by (2.11), where φj (n, t) is given by (2.10). Rational
and mixed solutions are denoted respectively by (2.18) and (2.23), where for the case of
a+

j = a−
j = 1, ai(n, t) is defined by (2.16) and for the cases of a+

j = −a−
j = 1 and

|a+
j | �= |a−

j |, ai(n, t) is defined respectively by (2.19) and (2.20). Obviously, these results are
the same as the Toda lattice, but the solutions of equation (3.1) are recovered from (3.2).

4. Conclusion

We have reconsidered soliton solutions in the CD form for the Toda lattice and differential-
difference KdV equation by re-choosing entries. Such a choice allows us to derive rational
solutions in the CD form following the method proposed by Nimmo and Freeman [16]. We
also further develop their procedure to obtain mixed (N − l)-rational l-soliton solutions. All
these solutions are verified by direct substitutions into bilinear equations. The method used in
this paper is general and can apply to other discrete systems.



Mixed rational–soliton solutions of two differential-difference equations in Casorati determinant form 4873

Acknowledgments

The authors are very grateful to the referees for their invaluable comments. This project is
supported by the National Natural Science Foundation of China.

References

[1] Gardner C S, Greene J M, Kruskal M D and Miura R M 1987 Phys. Rev. Lett. 19 1095
[2] Hirota R 1971 Phys. Rev. Lett. 27 1192
[3] Hirota R 1974 Prog. Theor. Phys. 52 1498
[4] Crum M M 1955 Q. J. Oxford 6 121
[5] Satsum J 1979 J. Phys. Soc. Japan 46 359
[6] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[7] Nimmo J J C and Freeman N C 1983 Phys. Lett. A 95 4
[8] Nimmo J J C and Freeman N C 1984 J. Phys. A: Math. Gen. 17 1415
[9] Nimmo J J C 1983 Phys. Lett. A 99 281

[10] Airault H, Mckean H P and Moser J 1977 Commun. Pure Appl. Math. 30 25
[11] Adler M and Moser J 1978 Commun. Math. Phys. 61 1
[12] Ablowitz M J and Satsuma J 1978 J. Math. Phys. 19 2180
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